

ROBOTICS

Application manual

Torch services

Trace back information:
Workspace 24B version a11
Checked in 2024-06-13
Skribenta version 5.5.019

Application manual Torch services

Torch Services for OmniCore

Document ID: 3HAC089029-001

Revision: A

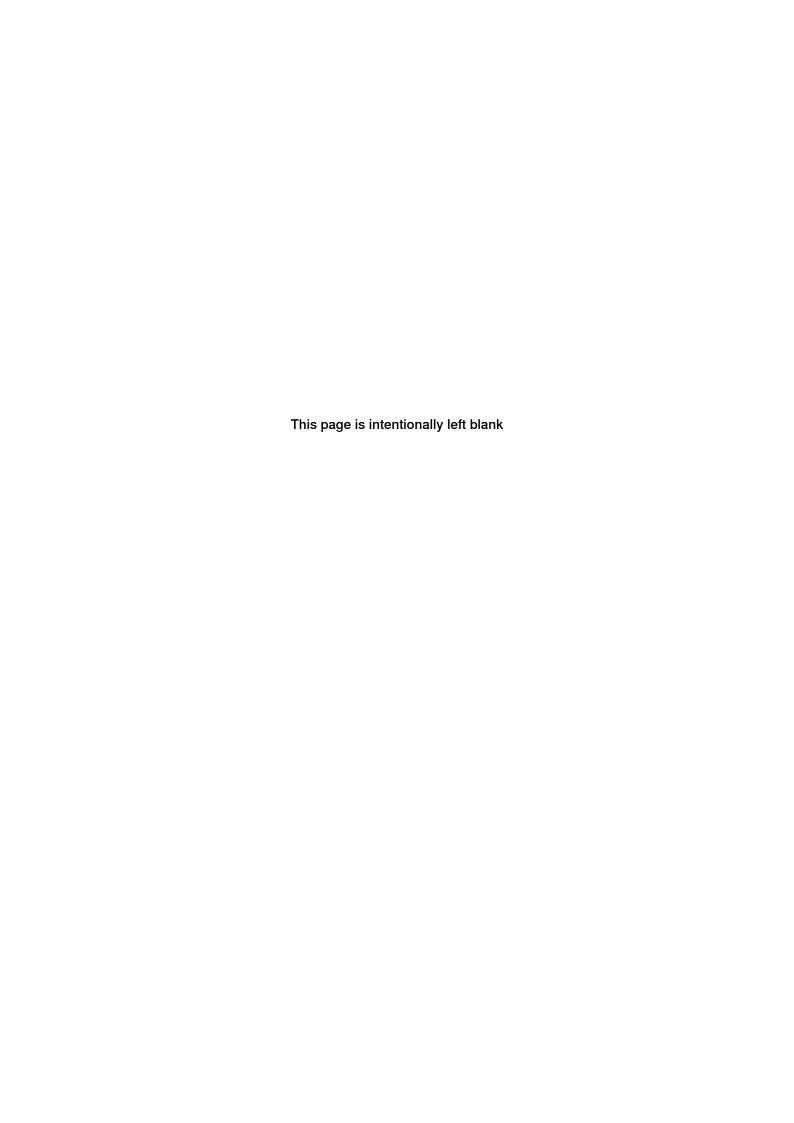
The information in this manual is subject to change without notice and should not be construed as a commitment by ABB. ABB assumes no responsibility for any errors that may appear in this manual.

Except as may be expressly stated anywhere in this manual, nothing herein shall be construed as any kind of guarantee or warranty by ABB for losses, damage to persons or property, fitness for a specific purpose or the like.

In no event shall ABB be liable for incidental or consequential damages arising from use of this manual and products described herein.

This manual and parts thereof must not be reproduced or copied without ABB's written permission.

Keep for future reference.


Additional copies of this manual may be obtained from ABB.

Original instructions.

© Copyright 2004-2024 ABB. All rights reserved. Specifications subject to change without notice.

Table of contents

	Over	view of this manual	7
1	Intro	duction	9
	1.1	Product overview	9
	1.2	Operation overview	
	1.3	Requirements	11
2	Insta	Illation	13
	2.1	Software set-up	13
		2.1.1 Software installation	13
		2.1.2 System parameters	15
		2.1.3 Loading software	17
3	RAPI	ID reference	19
	3.1	MoveMechCleanJ - Move joint mechanical clean	19
	3.2	MoveMechCleanL - Move linear mechanical clean	23
	3.3	MoveSprayJ - Move spray	27
	3.4	MoveSprayL - Move linear spray	31
	3.5	MoveWireCutJ - Move wire cut	35
	3.6	MoveWireCutL - Move linear wire cut	39
Inc	dex		43

Overview of this manual

About this manual

This manual explains the basics of when and how to use the following Torch Service options:

- · Product overview
- Operation overview
- · Requirements overview
- · Software set-up
- · Software reference, instructions

Usage

This manual can be used either as a reference to find out if an option is the right choice for solving a problem, or as a description of how to use an option. Detailed information regarding syntax for RAPID routines, and similar, is not described here, but can be found in the respective reference manual.

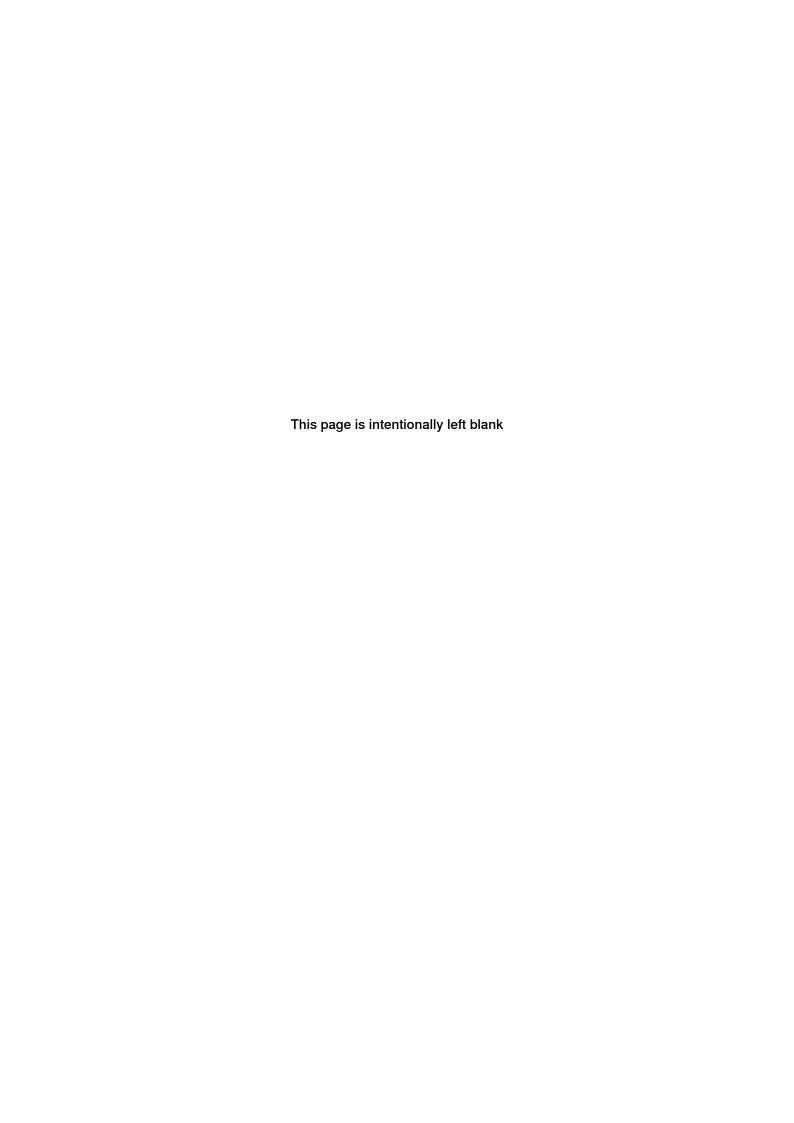
Who should read this manual?

This manual is intended for:

- · installation personnel
- · robot programmers

Prerequisites

The reader should be familiar with:


- · industrial robots and their terminology
- · the RAPID programming language
- · system parameters and how to configure them.

Reference documents

References	Document ID
Technical reference manual - RAPID Overview	3HAC065040-001
Technical reference manual - RAPID Instructions, Functions and Data types	3HAC065038-001
Operating manual - OmniCore	3HAC065036-001
Technical reference manual - System parameters	3HAC065041-001
Operating manual - RobotStudio	3HAC032104-001
Application manual - GAP	3HAC024844-001

Revisions

Revision	Description
Α	First edition.

1.1 Product overview

1 Introduction

1.1 Product overview

About Torch services

Torch Services is a set of functions for maintaining the welding gun of a MIG/MAG welding system.

Available services

The available services consist of:

Automatic mechanical cleaning	Automatic mechanical cleaning of the contact tip and gas nozzle to remove welding spatter.
Automatic spraying	Automatic spraying of the contact tip and gas nozzle with a liquid weld spatter release agent.
Automatic cut-off of the welding wire	Automatic cut-off of the welding wire.

1.2 Operation overview

1.2 Operation overview

RAPID instructions

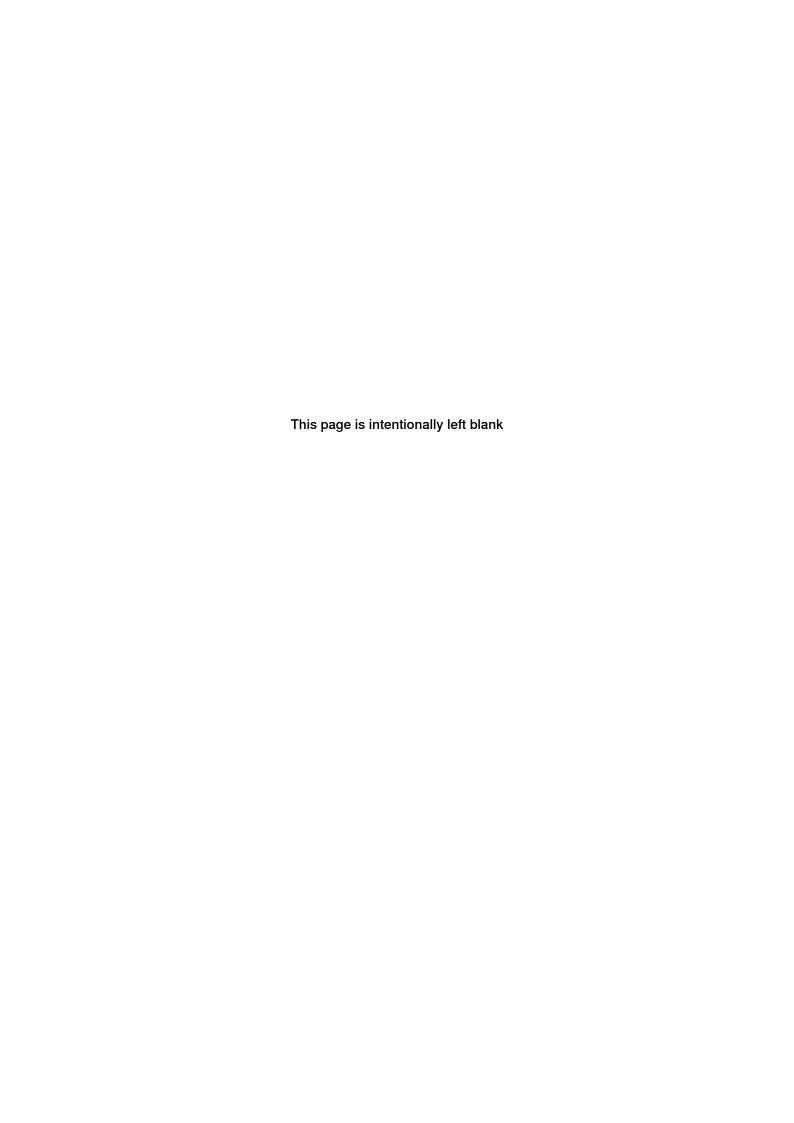
Torch Services consist of a number of Move instructions in RAPID. The instructions are programmed in traditional RAPID programming manner. Each instruction moves the welding gun to the service location and starts the service equipment.

1.3 Requirements

1.3 Requirements

System requirements

This Torch Services version is intended for use in arc welding systems incorporating ABB robots.

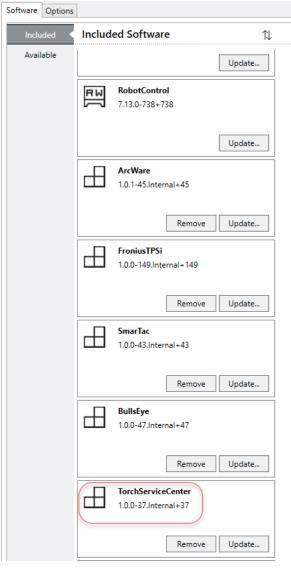

- RobotWare requirements: 7.13 or later
- · Controller requirements: OmniCore

Torch services package

The Torch Services package includes software that is loaded into all arc welding motion tasks, when the Torch Services option is purchased. Process configuration parameters are used to connect real I/O signals and to modify the default settings.

User requirements

Any competent robot programmer (RAPID language) may be self-taught to program and use Torch Services.

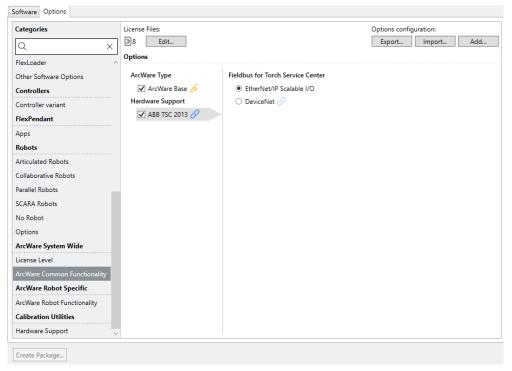

2 Installation

2.1 Software set-up

2.1.1 Software installation

About Torch Service Center Add-In

The Torch Service Center function package is provided as an add-in, and needs to be installed in the robot controller using the dialog Modify Installation in Robotstudio. The add-in requires the licence 3416-2 Arc welding Premium. Add the option to the system.


xx2300001858

In the Options section, browse to ArcWare System Wide, ArcWare Common Functionality to find ABB TSC 2013. The Torch Service Center option is selected

2.1.1 Software installation

Continued

by default when the add-in is installed. The sub-option FieldBus, EtherNet/IP Scalable I/O is also selected by default.

xx2300001859

2.1.2 System parameters

2.1.2 System parameters

Introduction

Torch Services I/O connections together with additional settings for torch services are configured in the process configuration (PROC).

Actual I/O assignments to real I/O boards are not made by the Torch Services installation. These definitions must be added to the EIO configuration by the user or system designer.

Default process configuration

Below is the default process configuration loaded by Torch Services. There is a separate configuration for each task.

```
PROC:CFG_1.0::
# TCMC proc.cfg file

#
TS_MECHCLEAN_PROP:
-name "TSMC_1" -ReamTime 3 -ClampOpen "diTS1_ClOp" \
-Start "doTS1_St" -AirBlast "doTS1_AiBl"

#
TS_SPRAY_PROP:
-name "TSSP_1" -SprayTime 2 -SprayOn "doTS1_SpOn"

#
TS_WIRECUT_PROP:
-name "TSWC_1" -ShearWidth 20 -ShearDirection 0 \
-Cut "doTS1_St" -CutterOpen "diTS1_ClOp"
```

To change settings

To change settings, RobotStudio is preferably used. It is also possible to load an altered proc.cfg, with the **Add or Replace** feature to override the existing fields with the new settings.

Extend the ream time

For example, a user could extend the ream time by loading a file like this:

```
PROC:CFG_1.0:
# TCMC proc.cfg file

#
TS_MECHCLEAN_PROP:
-name "TSMC_1" -ReamTime 5 -ClampOpen "diTS1_ClOp" \
-Start "doTS1_St" -AirBlast "doTS1_AiB1"
```


Note

Torch Services does not install any I/O signals in the EIO configuration. It provides only a mechanism to connect to existing signals in the system. If the robotic system is not a turnkey system, I/O signals will need to be installed in the system.

2.1.2 System parameters *Continued*

I/O configuration file

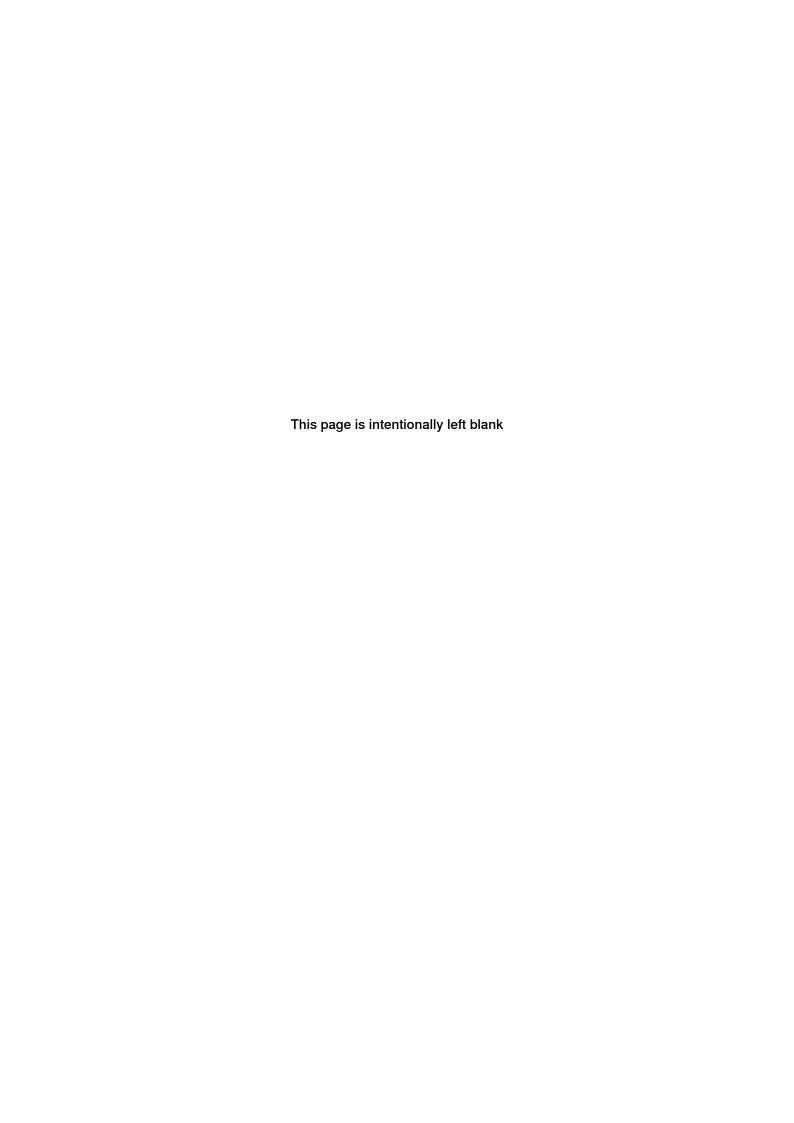
Below is an example of an I/O configuration file that could be used to load I/O signals for the default case:

```
EIO:CFG_1.0:5.0:
#

EIO_SIGNAL:
    -Name " diTS1_ClOp" -SignalType "DI" -Unit "Board_A" -UnitMap 0
    -Name " doTS1_St" -SignalType "DO" -Unit "Board_A" -UnitMap 0
    -Name " doTS1_AiBl" -SignalType "DO" -Unit "Board_A" -UnitMap 1
    -Name " doTS1_SpOn " -SignalType "DO" -Unit "Board_A" -UnitMap 1
```

2.1.3 Loading software

2.1.3 Loading software


Loading software

The software is loaded automatically when the add-in Torch Services is added to the robot system.

Note

Torch Services is a separate Arc add-in.

3 RAPID reference

3.1 MoveMechCleanJ - Move joint mechanical clean

Usage

MoveMechCleanJ is an instruction used to ream (clean) the tool mechanically. The movement to reach the cleaning station does not have to be in a straight line.

Basic examples

MoveMechCleanJ rtApp, rtMechClean, v200, fine, tWeldGun;

The tool center point (TCP) of the tool, tWeldGun, is moved to the position, rtApp, with speed data v200 and zone data fine. At rtApp the TCP is moved along a linear path to the position rtMechClean. At rtMechClean the mechanical cleaning equipment is started. After the ream operation the TCP is moved back linearly to position rtApp.

Arguments

MoveMechCleanJ ApproachPoint CleanPoint Speed Zone Tool [\WObj] [\TLoad]

ApproachPoint

Data type: robtarget

The approach point of the robot and external axes directly above the spray station. It is defined as a named position or stored directly in the instruction (marked with an * in the instruction).

CleanPoint

Data type: robtarget

The destination point of the robot and external axes. It is defined as a named position or stored directly in the instruction (marked with an * in the instruction).

Speed

Data type: speeddata

The speed data that applies to movements. Speed data defines the velocity for the tool center point, the tool reorientation and external axes.

Zone

Data type: zonedata

Zone data for the movement. Zone data describes the size of the generated corner

path.

Tool

Data type: tooldata

The tool in use when the robot moves. The tool center point is the point moved to

the specified destination position.

[\WObj]

Data type: wobjdata

3.1 MoveMechCleanJ - Move joint mechanical clean Continued

The work object (coordinate system) to which the robot position in the instruction is related.

This argument can be omitted, and if it is, the position is related to the world coordinate system. If, on the other hand, a stationary tool or coordinated external axes are used, this argument must be specified in order to perform a linear movement relative to the work object.

[\TLoad]

Data type: loaddata

The \TLoad argument describes the total load used in the movement. The total load is the tool load together with the payload that the tool is carrying. If the \TLoad argument is used, then the loaddata in the current tooldata is not considered.

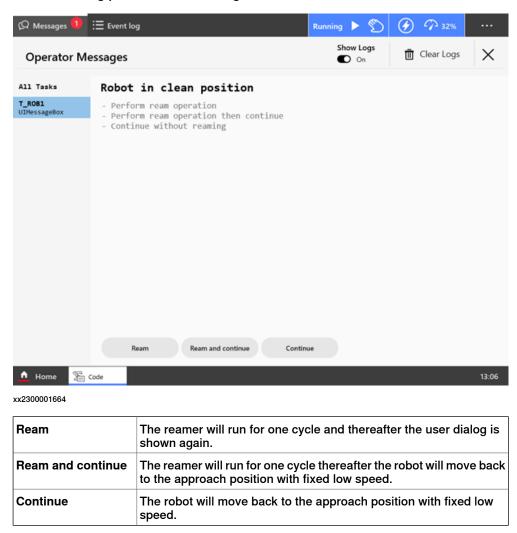
If the \TLoad argument is set to load0, then the \TLoad argument is not considered and the loaddata in the current tooldata is used instead. For a complete description of the TLoad argument, see MoveL in Technical reference manual - RAPID Instructions, Functions and Data types.

Program execution

Automatic or continuous mode

When executed, the robot makes a linear movement to the approach position, ApproachPoint. Then, the robot makes a linear movement to the cleaning position, CleanPoint with fixed low speed. At the cleaning position the mechanical cleaner is started. The cleaner will run the timed specified in the system configuration. When the cleaning operation is done, the robot will move back to the approach position with fixed low speed.

Forward step mode


When executed, the robot makes a movement to the approach position, ApproachPoint.

Then, the robot makes a linear movement to the cleaning position, CleanPoint with fixed low speed.

3.1 MoveMechCleanJ - Move joint mechanical clean Continued

User dialog

At the cleaning position a user dialog is shown.

More examples

MoveMechCleanJ rtApp, rtMC, vMax, fine, tWeldGun \WObj:=fixture;

The TCP of the tool, tweldGun, is moved linearly to the position, rtApp. This position is specified in the object coordinate system for fixture.

At rtApp the TCP is moved along a linear path to the position rtSP. This position is also specified in the object coordinate system for fixture. At rtSP the mechanical cleaning equipment is started. After the ream operation the TCP is moved back linearly to position rtApp.

Syntax

```
MoveMechCleanJ
  [ ApproachPoint ':=' ] < expression (IN) of robtarget > ','
  [ CleanPoint ':=' ] < expression (IN) of robtarget > ','
  [ Speed ':=' ] < expression (IN) of speeddata > ','
  [ Zone ':=' ] < expression (IN) of zonedata > ','
  [ Tool ':=' ] < persistent (PERS) of tooldata >
  [ '\' WObj ':=' < persistent (PERS) of wobjdata > ]
```

3.1 MoveMechCleanJ - Move joint mechanical clean *Continued*

['\' TLoad ':='] < persistent (PERS) of loaddata >] ';'

Related information

	Described in:		
MoveMechCleanL	MoveMechCleanL - Move linear mechanical clean on page 23		
MoveSprayL	MoveSprayL - Move linear spray on page 31		
MoveSprayJ	MoveSprayJ - Move spray on page 27		
MoveWireCutL	MoveWireCutL - Move linear wire cut on page 39		
MoveWireCutJ	MoveWireCutJ - Move wire cut on page 35		
MoveL	Technical reference manual - RAPID Instructions, Functions and Data types		
Definition of loaddata	Technical reference manual - RAPID Instructions, Functions and Data types		

3.2 MoveMechCleanL - Move linear mechanical clean

Usage

MoveMechCleanL is an instruction used to ream (clean) the tool mechanically. The movement to reach the cleaning station is performed linearly.

Basic examples

MoveMechCleanL rtApp, rtMechClean, v200, fine, tWeldGun;

The tool center point (TCP) of the tool, tWeldGun, is moved along a linear path to the position, rtApp, with speed data v200 and zone data fine. At rtApp the TCP is moved along a linear path to the position rtMechClean. At rtMechClean the mechanical cleaning equipment is started. After the ream operation the TCP is moved back linearly to position rtApp.

Arguments

MoveMechCleanL ApproachPoint CleanPoint Speed Zone Tool [\WObj] [\TLoad]

ApproachPoint

Data type: robtarget

The approach point of the robot and external axes directly above the clean station. It is defined as a named position or stored directly in the instruction (marked with an * in the instruction).

CleanPoint

Data type: robtarget

The destination point of the robot and external axes. It is defined as a named position or stored directly in the instruction (marked with an * in the instruction).

Speed

Data type: speeddata

The speed data that applies to movements. Speed data defines the velocity for the tool center point, the tool reorientation and external axes.

Zone

Data type: zonedata

Zone data for the movement. Zone data describes the size of the generated corner path.

Tool

Data type: tooldata

The tool in use when the robot moves. The tool center point is the point moved to the specified destination position.

[\WObj]

Data type: wobjdata

The work object (coordinate system) to which the robot position in the instruction is related.

3.2 MoveMechCleanL - Move linear mechanical clean Continued

This argument can be omitted, and if it is, the position is related to the world coordinate system. If, on the other hand, a stationary tool or coordinated external axes are used, this argument must be specified in order to perform a linear movement relative to the work object.

[\TLoad]

Data type: loaddata

The \TLoad argument describes the total load used in the movement. The total load is the tool load together with the payload that the tool is carrying. If the \TLoad argument is used, then the loaddata in the current tooldata is not considered.

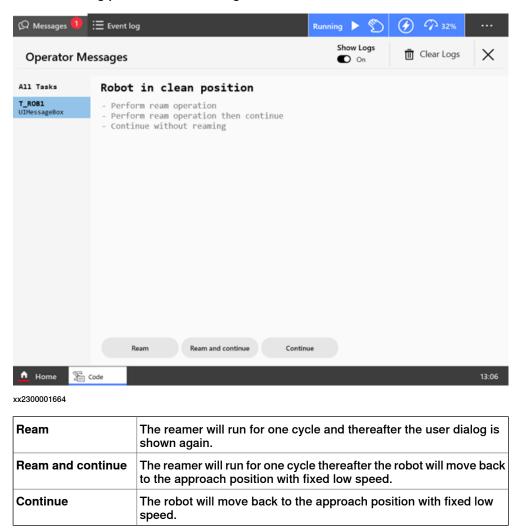
If the \TLoad argument is set to load0, then the \TLoad argument is not considered and the loaddata in the current tooldata is used instead. For a complete description of the TLoad argument, see MoveL in Technical reference manual - RAPID Instructions, Functions and Data types.

Program execution

Automatic or continuous mode

When executed, the robot makes a linear movement to the approach position, ApproachPoint. Then, the robot makes a linear movement to the cleaning position, CleanPoint with fixed low speed. At the cleaning position the mechanical cleaner is started. The cleaner will run the timed specified in the system configuration. When the cleaning operation is done, the robot will move back to the approach position with fixed low speed.

Forward step mode


When executed, the robot makes a linear movement to the approach position, ApproachPoint.

Then, the robot makes a linear movement to the cleaning position, CleanPoint with fixed low speed.

3.2 MoveMechCleanL - Move linear mechanical clean Continued

User dialog

At the cleaning position a user dialog is shown.

More examples

MoveMechCleanL rtApp, rtMC, vMax, fine, tWeldGun \WObj:=fixture;

The TCP of the tool, tWeldGun, is moved linearly to the position, rtApp. This position is specified in the object coordinate system for fixture.

At rtApp the TCP is moved along a linear path to the position rtMC. This position is also specified in the object coordinate system for fixture. At rtMC the mechanical cleaning equipment is started. After the ream operation the TCP is moved back linearly to position rtApp.

Syntax

```
MoveMechCleanL
  [ ApproachPoint ':=' ] < expression (IN) of robtarget > ','
  [ CleanPoint ':=' ] < expression (IN) of robtarget > ','
  [ Speed ':=' ] < expression (IN) of speeddata > ','
  [ Zone ':=' ] < expression (IN) of zonedata > ','
  [ Tool ':=' ] < persistent (PERS) of tooldata >
  [ '\' WObj ':=' < persistent (PERS) of wobjdata > ]
```

3.2 MoveMechCleanL - Move linear mechanical clean *Continued*

['\' TLoad ':='] < persistent (PERS) of loaddata >] ';'

Related information

	Described in:		
MoveMechCleanJ	MoveMechCleanJ - Move joint mechanical clean on page 19		
MoveSprayL	MoveSprayL - Move linear spray on page 31		
MoveSprayJ	MoveSprayJ - Move spray on page 27		
MoveWireCutL	MoveWireCutL - Move linear wire cut on page 39		
MoveWireCutJ	MoveWireCutJ - Move wire cut on page 35		
MoveL	Technical reference manual - RAPID Instructions, Functions and Data types		
Definition of loaddata	Technical reference manual - RAPID Instructions, Functions and Data types		

3.3 MoveSprayJ - Move spray

3.3 MoveSprayJ - Move spray

Usage

MoveSprayJ is an instruction used to move the weld gun to a station for automatic spraying of the contact tip and gas nozzle with a liquid weld spatter release agent. The movement to reach the cleaning station does not have to be in a straight line.

Basic examples

MoveSprayJ rtApp, rtSpray, v200, fine, tWeldGun;

The tool center point (TCP) of the tool, tWeldGun, is moved to the position, rtApp, with speed data v200 and zone data fine. At rtApp the TCP is moved along a linear path to the position rtSpray. At rtSpray the sprayer is started. After the spraying operation the TCP is moved back linearly to position rtApp.

Arguments

MoveSprayJ ApproachPoint SprayPoint Speed Zone Tool [\WObj] [\TLoad]

ApproachPoint

Data type: robtarget

The approach point of the robot and external axes directly above the clean station. It is defined as a named position or stored directly in the instruction (marked with an * in the instruction).

SprayPoint

Data type: robtarget

The destination point of the robot and external axes. It is defined as a named position or stored directly in the instruction (marked with an * in the instruction).

Speed

Data type: speeddata

The speed data that applies to movements. Speed data defines the velocity for the tool center point, the tool reorientation and external axes.

Zone

Data type: zonedata

Zone data for the movement. Zone data describes the size of the generated corner path.

Tool

Data type: tooldata

The tool in use when the robot moves. The tool center point is the point moved to the specified destination position.

[\WObj]

Data type: wobjdata

The work object (coordinate system) to which the robot position in the instruction is related.

3.3 MoveSprayJ - Move spray Continued

This argument can be omitted, and if it is, the position is related to the world coordinate system. If, on the other hand, a stationary tool or coordinated external axes are used, this argument must be specified in order to perform a linear movement relative to the work object.

[\TLoad]

Data type: loaddata

The \TLoad argument describes the total load used in the movement. The total load is the tool load together with the payload that the tool is carrying. If the \TLoad argument is used, then the \Tload argument tooldata is not considered.

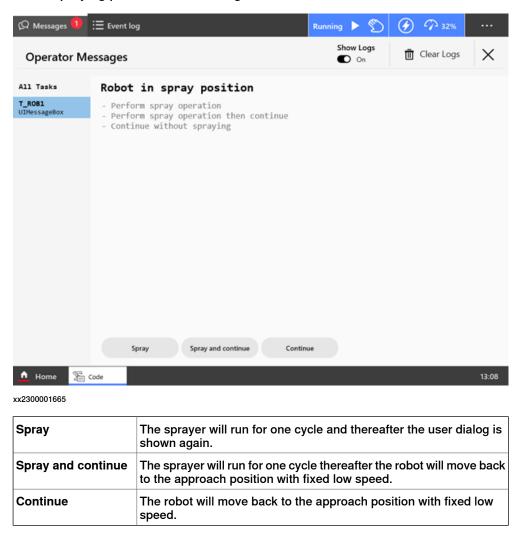
If the \TLoad argument is set to load0, then the \TLoad argument is not considered and the loaddata in the current tooldata is used instead. For a complete description of the TLoad argument, see MoveL in Technical reference manual - RAPID Instructions, Functions and Data types.

Program execution

Automatic or continuous mode

When executed, the robot makes a movement to the approach position, ApproachPoint. Then, the robot makes a linear movement to the spraying position, SprayPoint with fixed low speed. At the spraying position the sprayer is started. The sprayer will run the timed specified in the system configuration. When the spraying operation is done, the robot will move back to the approach position with fixed low speed.

Forward step mode


When executed, the robot makes a movement to the approach position, ApproachPoint.

Then, the robot makes a linear movement to the spraying position, SprayPoint with fixed low speed.

3.3 MoveSprayJ - Move spray Continued

User dialog

At the spraying position a user dialog is shown.

More examples

```
MoveSprayJ rtApp, rtSP, vMax, fine, tWeldGun \WObj:=fixture;
```

The TCP of the tool, tWeldGun, is moved to the position, rtApp. This position is specified in the object coordinate system for fixture.

At rtApp the TCP is moved along a linear path to the position rtSP. This position is also specified in the object coordinate system for fixture. At rtSP the spraying equipment is started. After the spraying operation the TCP is moved back linearly to position rtApp.

Syntax

```
MoveSprayJ
  [ ApproachPoint ':=' ] < expression (IN) of robtarget > ','
  [ SprayPoint ':=' ] < expression (IN) of robtarget > ','
  [ Speed ':=' ] < expression (IN) of speeddata > ','
  [ Zone ':=' ] < expression (IN) of zonedata > ','
  [ Tool ':=' ] < persistent (PERS) of tooldata >
  [ '\' WObj ':=' < persistent (PERS) of wobjdata > ]
```

3.3 MoveSprayJ - Move spray *Continued*

```
[ '\' TLoad ':=' ] < persistent (PERS) of loaddata > ] ';'
```

Related information

	Described in:		
MoveMechCleanL	MoveMechCleanL - Move linear mechanical clean on page 23		
MoveMechCleanJ	MoveMechCleanJ - Move joint mechanical clean on page 19		
MoveSprayL	MoveSprayL - Move linear spray on page 31		
MoveWireCutL	MoveWireCutL - Move linear wire cut on page 39		
MoveWireCutJ	MoveWireCutJ - Move wire cut on page 35		
MoveL	Technical reference manual - RAPID Instructions, Functions and Data types		
Definition of loaddata	Technical reference manual - RAPID Instructions, Functions and Data types		

3.4 MoveSprayL - Move linear spray

3.4 MoveSprayL - Move linear spray

Usage

MoveSprayL is an instruction used to move the weld gun to a station for automatic spraying of the contact tip and gas nozzle with a liquid weld spatter release agent. The movement to reach the cleaning station is performed linearly.

Basic examples

MoveSprayL rtApp, rtSpray, v200, fine, tWeldGun;

The tool center point (TCP) of the tool, tWeldGun, is moved along a linear path to the position, rtApp, with speed data v200 and zone data fine. At rtApp the TCP is moved along a linear path to the position rtSpray. At rtSpray the sprayer is started. After the spraying operation the TCP is moved back linearly to position rtApp.

Arguments

MoveMechCleanL ApproachPoint CleanPoint Speed Zone Tool [\WObj] [\TLoad]

ApproachPoint

Data type: robtarget

The approach point of the robot and external axes directly above the clean station. It is defined as a named position or stored directly in the instruction (marked with an * in the instruction).

SprayPoint

Data type: robtarget

The destination point of the robot and external axes. It is defined as a named position or stored directly in the instruction (marked with an * in the instruction).

Speed

Data type: speeddata

The speed data that applies to movements. Speed data defines the velocity for the tool center point, the tool reorientation and external axes.

Zone

Data type: zonedata

Zone data for the movement. Zone data describes the size of the generated corner

path.

Tool

Data type: tooldata

The tool in use when the robot moves. The tool center point is the point moved to

the specified destination position.

[\WObj]

Data type: wobjdata

3.4 MoveSprayL - Move linear spray Continued

The work object (coordinate system) to which the robot position in the instruction is related.

This argument can be omitted, and if it is, the position is related to the world coordinate system. If, on the other hand, a stationary tool or coordinated external axes are used, this argument must be specified in order to perform a linear movement relative to the work object.

[\TLoad]

Data type: loaddata

The \TLoad argument describes the total load used in the movement. The total load is the tool load together with the payload that the tool is carrying. If the \TLoad argument is used, then the loaddata in the current tooldata is not considered.

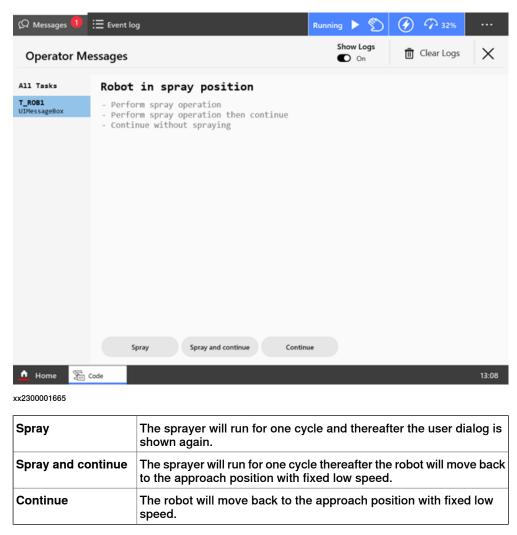
If the \TLoad argument is set to load0, then the \TLoad argument is not considered and the loaddata in the current tooldata is used instead. For a complete description of the TLoad argument, see MoveL in Technical reference manual - RAPID Instructions, Functions and Data types.

Program execution

Automatic or continuous mode

When executed, the robot makes a linear movement to the approach position, ApproachPoint. Then, the robot makes a linear movement to the spraying position, SprayPoint with fixed low speed. At the spraying position the sprayer is started. The sprayer will run the timed specified in the system configuration. When the spraying operation is done, the robot will move back to the approach position with fixed low speed.

Forward step mode


When executed, the robot makes a linear movement to the approach position, ApproachPoint.

Then, the robot makes a linear movement to the spraying position, SprayPoint with fixed low speed.

3.4 MoveSprayL - Move linear spray Continued

User dialog

At the spraying position a user dialog is shown.

More examples

```
MoveSprayL rtApp, rtSP, vMax, fine, tWeldGun \WObj:=fixture;
```

The TCP of the tool, tweldGun, is moved linearly to the position, rtApp. This position is specified in the object coordinate system for fixture.

At rtApp the TCP is moved along a linear path to the position rtSP. This position is also specified in the object coordinate system for fixture. At rtSP the spraying equipment is started. After the spraying operation the TCP is moved back linearly to position rtApp.

Syntax

```
MoveSprayL
  [ ApproachPoint ':=' ] < expression (IN) of robtarget > ','
  [ SprayPoint ':=' ] < expression (IN) of robtarget > ','
  [ Speed ':=' ] < expression (IN) of speeddata > ','
  [ Zone ':=' ] < expression (IN) of zonedata > ','
  [ Tool ':=' ] < persistent (PERS) of tooldata >
  [ '\' WObj ':=' < persistent (PERS) of wobjdata > ]
```

3.4 MoveSprayL - Move linear spray *Continued*

['\' TLoad ':='] < persistent (PERS) of loaddata >] ';'

Related information

	Described in:		
MoveMechCleanL	MoveMechCleanL - Move linear mechanical clean on page 23		
MoveMechCleanJ	MoveMechCleanJ - Move joint mechanical clean on page 19		
MoveSprayJ	MoveSprayJ - Move spray on page 27		
MoveWireCutL	MoveWireCutL - Move linear wire cut on page 39		
MoveWireCutJ	MoveWireCutJ - Move wire cut on page 35		
MoveL	Technical reference manual - RAPID Instructions, Functions and Data types		
Definition of loaddata	Technical reference manual - RAPID Instructions, Functions and Data types		

3.5 MoveWireCutJ - Move wire cut

3.5 MoveWireCutJ - Move wire cut

Usage

MoveWireCutJ is an instruction used to move the weld gun to a station for automatic cut-off of the welding wire. The movement to reach the cutting station does not have to be in a straight line.

Basic examples

MoveWireCutJ rtApp, rtCut, v200, fine, tWeldGun;

The tool center point (TCP) of the tool, tWeldGun, is moved to the position, rtApp, with speed data v200 and zone data fine. At rtApp the TCP is moved along a linear path to the position rtCut. At rtCut the wire is cut off. After the cutting operation the TCP is moved back linearly to position rtApp.

Arguments

MoveMechCleanL ApproachPoint CleanPoint Speed Zone Tool [\WObj] [\TLoad]

ApproachPoint

Data type: robtarget

The approach point of the robot and external axes directly above the spray station. It is defined as a named position or stored directly in the instruction (marked with

an * in the instruction).

CutPoint

Data type: robtarget

The destination point of the robot and external axes. It is defined as a named position or stored directly in the instruction (marked with an * in the instruction).

Speed

Data type: speeddata

The speed data that applies to movements. Speed data defines the velocity for the tool center point, the tool reorientation and external axes.

Zone

Data type: zonedata

Zone data for the movement. Zone data describes the size of the generated corner path.

Tool

Data type: tooldata

The tool in use when the robot moves. The tool center point is the point moved to the specified destination position.

[\WObj]

Data type: wobjdata

The work object (coordinate system) to which the robot position in the instruction is related.

3.5 MoveWireCutJ - Move wire cut Continued

This argument can be omitted, and if it is, the position is related to the world coordinate system. If, on the other hand, a stationary tool or coordinated external axes are used, this argument must be specified in order to perform a linear movement relative to the work object.

[\TLoad]

Data type: loaddata

The \TLoad argument describes the total load used in the movement. The total load is the tool load together with the payload that the tool is carrying. If the \TLoad argument is used, then the loaddata in the current tooldata is not considered.

If the \TLoad argument is set to load0, then the \TLoad argument is not considered and the loaddata in the current tooldata is used instead. For a complete description of the TLoad argument, see MoveL in Technical reference manual - RAPID Instructions, Functions and Data types.

Program execution

Automatic or continuous mode

When executed, the robot makes a movement to the approach position, ApproachPoint. Then, the cutter opens and the robot makes a linear movement to the cutting position, CutPoint with fixed low speed. When the cutting operation is done, the robot will move back to the approach position with fixed low speed.

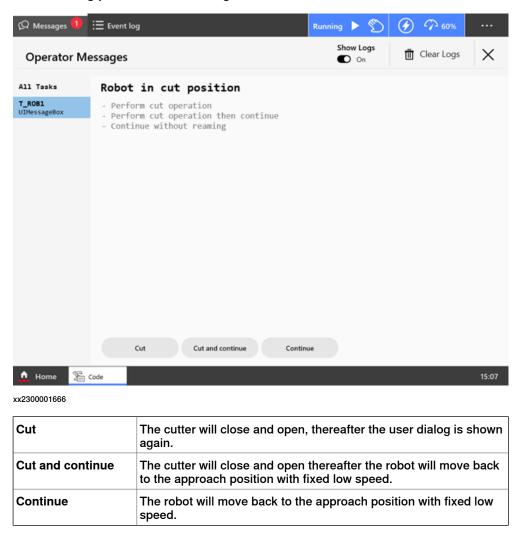
Note

If the system parameters *ShearWidth* and *ShearDirection* are used the cut position will be slightly different each time to minimize the shear wear.

Forward step mode

When executed, the robot makes a linear movement to the approach position, ApproachPoint.

Then, the robot makes a linear movement to the cutting position, SprayPoint with fixed low speed.


Note

If the system parameters *ShearWidth* and *ShearDirection* are used the cut position will be slightly different each time to minimize the shear wear.

3.5 MoveWireCutJ - Move wire cut Continued

User dialog

At the cutting position a user dialog is shown.

More examples

```
MoveWireCutJ rtApp, rtCut, vMax, fine, tWeldGun \WObj:=fixture;
```

The TCP of the tool, tWeldGun, is moved to the position, rtApp. This position is specified in the object coordinate system for fixture.

At rtApp the cutter opens and the TCP is moved along a linear path to the position rtCut. This position is also specified in the object coordinate system for fixture. At rtCut the closes and opens. After the cutting operation the TCP is moved back linearly to position rtApp.

Syntax

```
MoveWireCutJ
  [ ApproachPoint ':=' ] < expression (IN) of robtarget > ','
  [ CutPoint ':=' ] < expression (IN) of robtarget > ','
  [ Speed ':=' ] < expression (IN) of speeddata > ','
  [ Zone ':=' ] < expression (IN) of zonedata > ','
  [ Tool ':=' ] < persistent (PERS) of tooldata >
  [ '\' WObj ':=' < persistent (PERS) of wobjdata > ]
```

3.5 MoveWireCutJ - Move wire cut Continued

```
[ '\' TLoad ':=' ] < persistent (PERS) of loaddata > ] ';'
```

Related information

	Described in:		
MoveMechCleanL	MoveMechCleanL - Move linear mechanical clean on page 23		
MoveMechCleanJ	MoveMechCleanJ - Move joint mechanical clean on page 19		
MoveSprayL	MoveSprayL - Move linear spray on page 31		
MoveSprayJ	MoveSprayJ - Move spray on page 27		
MoveWireCutL	MoveWireCutL - Move linear wire cut on page 39		
MoveL	Technical reference manual - RAPID Instructions, Functions and Data types		
Definition of loaddata	Technical reference manual - RAPID Instructions, Functions and Data types		

3.6 MoveWireCutL - Move linear wire cut

3.6 MoveWireCutL - Move linear wire cut

Usage

MoveWireCutL is an instruction used to move the weld gun to a station for automatic cut-off of the welding wire. The movement to reach the cutting station is performed linearly.

Basic examples

MoveWireCutL rtApp, rtCut, v200, fine, tWeldGun;

The tool center point (TCP) of the tool, tWeldGun, is moved along a linear path to the position, rtApp, with speed data v200 and zone data fine. At rtApp the TCP is moved along a linear path to the position rtCut. At rtCut the wire is cut off. After the cutting operation the TCP is moved back linearly to position rtApp.

Arguments

MoveWireCutL ApproachPoint CutPoint Speed Zone Tool [\WObj] [\TLoad]

ApproachPoint

Data type: robtarget

The approach point of the robot and external axes directly above the spray station. It is defined as a named position or stored directly in the instruction (marked with an * in the instruction).

CutPoint

Data type: robtarget

The destination point of the robot and external axes. It is defined as a named position or stored directly in the instruction (marked with an * in the instruction).

Speed

Data type: speeddata

The speed data that applies to movements. Speed data defines the velocity for the tool center point, the tool reorientation and external axes.

Zone

Data type: zonedata

Zone data for the movement. Zone data describes the size of the generated corner path.

Tool

Data type: tooldata

The tool in use when the robot moves. The tool center point is the point moved to the specified destination position.

[\WObj]

Data type: wobjdata

The work object (coordinate system) to which the robot position in the instruction is related.

3.6 MoveWireCutL - Move linear wire cut Continued

This argument can be omitted, and if it is, the position is related to the world coordinate system. If, on the other hand, a stationary tool or coordinated external axes are used, this argument must be specified in order to perform a linear movement relative to the work object.

[\TLoad]

Data type: loaddata

The \TLoad argument describes the total load used in the movement. The total load is the tool load together with the payload that the tool is carrying. If the \TLoad argument is used, then the loaddata in the current tooldata is not considered.

If the \TLoad argument is set to load0, then the \TLoad argument is not considered and the loaddata in the current tooldata is used instead. For a complete description of the TLoad argument, see MoveL in Technical reference manual - RAPID Instructions, Functions and Data types.

Program execution

Automatic or continuous mode

When executed, the robot makes a linear movement to the approach position, ApproachPoint. Then, the cutter opens and the robot makes a linear movement to the cutting position, CutPoint with fixed low speed. When the cutting operation is done, the robot will move back to the approach position with fixed low speed.

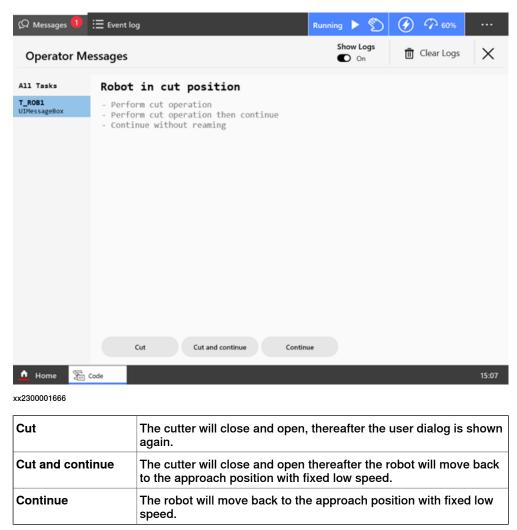
Note

If the system parameters *ShearWidth* and *ShearDirection* are used the cut position will be slightly different each time to minimize the shear wear.

Forward step mode

When executed, the robot makes a linear movement to the approach position, ApproachPoint.

Then, the robot makes a linear movement to the cutting position, SprayPoint with fixed low speed.


Note

If the system parameters *ShearWidth* and *ShearDirection* are used the cut position will be slightly different each time to minimize the shear wear.

3.6 MoveWireCutL - Move linear wire cut Continued

User dialog

At the cutting position a user dialog is shown.

More examples

```
MoveWireCutJ rtApp, rtCut, vMax, fine, tWeldGun \WObj:=fixture;
```

The TCP of the tool, tWeldGun, is moved linearly to the position, rtApp. This position is specified in the object coordinate system for fixture.

At rtApp the cutter opens and the TCP is moved along a linear path to the position rtCut. This position is also specified in the object coordinate system for fixture. At rtCut the closes and opens. After the cutting operation the TCP is moved back linearly to position rtApp.

Syntax

```
MoveWireCutL
  [ ApproachPoint ':=' ] < expression (IN) of robtarget > ','
  [ CutPoint ':=' ] < expression (IN) of robtarget > ','
  [ Speed ':=' ] < expression (IN) of speeddata > ','
  [ Zone ':=' ] < expression (IN) of zonedata > ','
  [ Tool ':=' ] < persistent (PERS) of tooldata >
  [ '\' WObj ':=' < persistent (PERS) of wobjdata >
```

3.6 MoveWireCutL - Move linear wire cut *Continued*

['\' TLoad ':='] < persistent (PERS) of loaddata >] ';'

Related information

	Described in:		
MoveMechCleanL	MoveMechCleanL - Move linear mechanical clean on page 23		
MoveMechCleanJ	MoveMechCleanJ - Move joint mechanical clean on page 19		
MoveSprayL	MoveSprayL - Move linear spray on page 31		
MoveSprayJ	MoveSprayJ - Move spray on page 27		
MoveWireCutJ	MoveWireCutJ - Move wire cut on page 35		
MoveL	Technical reference manual - RAPID Instructions, Functions and Data types		
Definition of loaddata	Technical reference manual - RAPID Instructions, Functions and Data types		

Index

A available services, 9 D default I/O, 15 I I/O, 15 I/O, default, 15 installation, software, 17 L license, 17

```
M
MoveMechCleanJ, 19
MoveMechCleanL, 23
MoveSprayJ, 27
MoveSprayL, 31
MoveWireCutJ, 35
MoveWireCutL, 39

R
requirements, 11
requirements, user, 11

S
services, 9
software, loading, 17
system parameters, 15
```


ABB AB

Robotics & Discrete Automation S-721 68 VÄSTERÅS, Sweden Telephone +46 10-732 50 00

ABB AS

Robotics & Discrete Automation

Nordlysvegen 7, N-4340 BRYNE, Norway Box 265, N-4349 BRYNE, Norway Telephone: +47 22 87 2000

ABB Engineering (Shanghai) Ltd.

Robotics & Discrete Automation No. 4528 Kangxin Highway PuDong New District SHANGHAI 201319, China Telephone: +86 21 6105 6666

ABB Inc.

Robotics & Discrete Automation

1250 Brown Road Auburn Hills, MI 48326 USA

Telephone: +1 248 391 9000

abb.com/robotics